Parallel solution of Newton’s power flow equations on configurable chips

نویسندگان

  • Xiaofang Wang
  • Sotirios G. Ziavras
  • Chika Nwankpa
  • Jeremy Johnson
  • Prawat Nagvajara
چکیده

The conventional Newton’s method (also known as Newton–Raphson method) for the AC power flow problem is preferred in some situations due to its local quadratic convergence. However, its high computation and memory requirements due to the required LU factorization of the Jacobian matrix at each iteration limit its practical employment in the online operation of very large systems. We produce here a novel partitioning scheme for the nonsymmetric Jacobian matrices appearing in the Newtons’s method. It results in the efficient parallelization of LU factorization and the subsequent solution of the power flow equations. We also present our implementation on our target computing platform comprising a single-chip shared-memory configurable multiprocessor. We designed and implemented our multiprocessor on an SOPC (system-on-a-programmable-chip) computer board containing an FPGA (fieldprogrammable gate array) device. This new configurable computing paradigm combines the flexibility of microprocessors and programmable logic with the high performance of ASIC (application-specific integrated circuit) designs, and facilitates low-cost parallel implementations with reasonable turnaround times. Our good performance results for IEEE power test systems and others representing parts of the US power grid in the northeast demonstrate that our cost-effective and robust approach is viable and has tremendous potential to be enhanced further with steady advances in silicon technology, as predicted by Moore’s Law. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady MHD nonlinear radiative squeezing slip-flow of Casson fluid between parallel disks

Effect of nonlinear thermal radiation on the unsteady magnetohydrodynamic slip flow of Casson fluid between parallel disks in the presence of thermophoresis and Brownian motion effects are investigated numerically. A similarity transformation is employed to reduce the governing partial differential equations into ordinary differential equations. Further, Runge-Kutta and Newton’s methods are ado...

متن کامل

Comparison of Binomial and Power Equations in Radial Non-Darcy Flows in Coarse Porous Media

Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified into power and binomial equations. Binomial equation is more accurate in a wide range of velocit...

متن کامل

A New Load-Flow Method in Distribution Networks based on an Approximation Voltage-Dependent Load model in Extensive Presence of Distributed Generation Sources

Power-flow (PF) solution is a basic and powerful tool in power system analysis. Distribution networks (DNs), compared to transmission systems, have many fundamental distinctions that cause the conventional PF to be ineffective on these networks. This paper presents a new fast and efficient PF method which provides all different models of Distributed Generations (DGs) and their operational modes...

متن کامل

Computer extended series and HAM for the solution of non-linear Squeezing flow of Casson fluid between parallel plates

The paper presents analysis of two-dimensional non-Newtonian incompressible viscous flow between parallel plates. The governing problem of momentum equations are reduced to NODE using similarity transformations. The resulting equation is solved using series solution and homotopy analysis method. These methods have advantages over pure numerical methods for obtaining the derived quantities accur...

متن کامل

Optimal Power Flow based on Generation Rescheduling Priority for Transient Stability Enhancement

This paper presents an optimal power flow method based on the generation rescheduling priority to enhance transient stability in power systems. In order to determine the generation rescheduling priority the energy margin sensitivity indices are calculated. The candidate generators for generation rescheduling are determined by the energy margin sensitivity indices and then optimal power flow (OP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006